Filling In Random Bits
Hey you said you wanted to be production-quality, didn't you?
Here's some more random gunk to toss in to be a "good" collection:
impl<T> LinkedList<T> {
pub fn is_empty(&self) -> bool {
self.len == 0
}
pub fn clear(&mut self) {
// Oh look it's drop again
while let Some(_) = self.pop_front() { }
}
}
And now we've got a bunch of traits to implement that everyone expects:
impl<T> Default for LinkedList<T> {
fn default() -> Self {
Self::new()
}
}
impl<T: Clone> Clone for LinkedList<T> {
fn clone(&self) -> Self {
let mut new_list = Self::new();
for item in self {
new_list.push_back(item.clone());
}
new_list
}
}
impl<T> Extend<T> for LinkedList<T> {
fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
for item in iter {
self.push_back(item);
}
}
}
impl<T> FromIterator<T> for LinkedList<T> {
fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
let mut list = Self::new();
list.extend(iter);
list
}
}
impl<T: Debug> Debug for LinkedList<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_list().entries(self).finish()
}
}
impl<T: PartialEq> PartialEq for LinkedList<T> {
fn eq(&self, other: &Self) -> bool {
self.len() == other.len() && self.iter().eq(other)
}
fn ne(&self, other: &Self) -> bool {
self.len() != other.len() || self.iter().ne(other)
}
}
impl<T: Eq> Eq for LinkedList<T> { }
impl<T: PartialOrd> PartialOrd for LinkedList<T> {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
self.iter().partial_cmp(other)
}
}
impl<T: Ord> Ord for LinkedList<T> {
fn cmp(&self, other: &Self) -> Ordering {
self.iter().cmp(other)
}
}
impl<T: Hash> Hash for LinkedList<T> {
fn hash<H: Hasher>(&self, state: &mut H) {
self.len().hash(state);
for item in self {
item.hash(state);
}
}
}
I definitely wrote all of these from scratch, and didn't just copy the std impls. Because they're so interesting, and I definitely remember the subtleties of manually implementing Hash. Yeah, that's something I think about All The Time...
Ok there's actually a few things worth noting here.
First, a nasty namespace clash. For whatever reason std now has macros named Hash and Debug, and so if you don't have the traits imported, you'll get really cryptic errors about macros instead of the proper "missing trait".
The other intersting thing to talk about is Hash itself. Do you see how we hash in len
? That's actually really important! If collections don't hash in lengths, they can accidentally make themselves vulnerable to prefix collisions. For instance, what distinguishes ["he", "llo"]
from ["hello"]
? If no one is hashing lengths or some other "separator", nothing! Making it too easy for hash collisions to accidentally or maliciously happen can result in serious sadness, so just do it!
Alright, here's our current code:
#![allow(unused)] fn main() { use std::cmp::Ordering; use std::fmt::{self, Debug}; use std::hash::{Hash, Hasher}; use std::iter::FromIterator; use std::ptr::NonNull; use std::marker::PhantomData; pub struct LinkedList<T> { front: Link<T>, back: Link<T>, len: usize, _boo: PhantomData<T>, } type Link<T> = Option<NonNull<Node<T>>>; struct Node<T> { front: Link<T>, back: Link<T>, elem: T, } pub struct Iter<'a, T> { front: Link<T>, back: Link<T>, len: usize, _boo: PhantomData<&'a T>, } pub struct IterMut<'a, T> { front: Link<T>, back: Link<T>, len: usize, _boo: PhantomData<&'a mut T>, } pub struct IntoIter<T> { list: LinkedList<T>, } impl<T> LinkedList<T> { pub fn new() -> Self { Self { front: None, back: None, len: 0, _boo: PhantomData, } } pub fn push_front(&mut self, elem: T) { // SAFETY: it's a linked-list, what do you want? unsafe { let new = NonNull::new_unchecked(Box::into_raw(Box::new(Node { front: None, back: None, elem, }))); if let Some(old) = self.front { // Put the new front before the old one (*old.as_ptr()).front = Some(new); (*new.as_ptr()).back = Some(old); } else { // If there's no front, then we're the empty list and need // to set the back too. self.back = Some(new); } // These things always happen! self.front = Some(new); self.len += 1; } } pub fn push_back(&mut self, elem: T) { // SAFETY: it's a linked-list, what do you want? unsafe { let new = NonNull::new_unchecked(Box::into_raw(Box::new(Node { back: None, front: None, elem, }))); if let Some(old) = self.back { // Put the new back before the old one (*old.as_ptr()).back = Some(new); (*new.as_ptr()).front = Some(old); } else { // If there's no back, then we're the empty list and need // to set the front too. self.front = Some(new); } // These things always happen! self.back = Some(new); self.len += 1; } } pub fn pop_front(&mut self) -> Option<T> { unsafe { // Only have to do stuff if there is a front node to pop. self.front.map(|node| { // Bring the Box back to life so we can move out its value and // Drop it (Box continues to magically understand this for us). let boxed_node = Box::from_raw(node.as_ptr()); let result = boxed_node.elem; // Make the next node into the new front. self.front = boxed_node.back; if let Some(new) = self.front { // Cleanup its reference to the removed node (*new.as_ptr()).front = None; } else { // If the front is now null, then this list is now empty! self.back = None; } self.len -= 1; result // Box gets implicitly freed here, knows there is no T. }) } } pub fn pop_back(&mut self) -> Option<T> { unsafe { // Only have to do stuff if there is a back node to pop. self.back.map(|node| { // Bring the Box front to life so we can move out its value and // Drop it (Box continues to magically understand this for us). let boxed_node = Box::from_raw(node.as_ptr()); let result = boxed_node.elem; // Make the next node into the new back. self.back = boxed_node.front; if let Some(new) = self.back { // Cleanup its reference to the removed node (*new.as_ptr()).back = None; } else { // If the back is now null, then this list is now empty! self.front = None; } self.len -= 1; result // Box gets implicitly freed here, knows there is no T. }) } } pub fn front(&self) -> Option<&T> { unsafe { self.front.map(|node| &(*node.as_ptr()).elem) } } pub fn front_mut(&mut self) -> Option<&mut T> { unsafe { self.front.map(|node| &mut (*node.as_ptr()).elem) } } pub fn back(&self) -> Option<&T> { unsafe { self.back.map(|node| &(*node.as_ptr()).elem) } } pub fn back_mut(&mut self) -> Option<&mut T> { unsafe { self.back.map(|node| &mut (*node.as_ptr()).elem) } } pub fn len(&self) -> usize { self.len } pub fn is_empty(&self) -> bool { self.len == 0 } pub fn clear(&mut self) { // Oh look it's drop again while let Some(_) = self.pop_front() { } } pub fn iter(&self) -> Iter<T> { Iter { front: self.front, back: self.back, len: self.len, _boo: PhantomData, } } pub fn iter_mut(&mut self) -> IterMut<T> { IterMut { front: self.front, back: self.back, len: self.len, _boo: PhantomData, } } pub fn into_iter(self) -> IntoIter<T> { IntoIter { list: self } } } impl<T> Drop for LinkedList<T> { fn drop(&mut self) { // Pop until we have to stop while let Some(_) = self.pop_front() { } } } impl<T> Default for LinkedList<T> { fn default() -> Self { Self::new() } } impl<T: Clone> Clone for LinkedList<T> { fn clone(&self) -> Self { let mut new_list = Self::new(); for item in self { new_list.push_back(item.clone()); } new_list } } impl<T> Extend<T> for LinkedList<T> { fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) { for item in iter { self.push_back(item); } } } impl<T> FromIterator<T> for LinkedList<T> { fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self { let mut list = Self::new(); list.extend(iter); list } } impl<T: Debug> Debug for LinkedList<T> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_list().entries(self).finish() } } impl<T: PartialEq> PartialEq for LinkedList<T> { fn eq(&self, other: &Self) -> bool { self.len() == other.len() && self.iter().eq(other) } fn ne(&self, other: &Self) -> bool { self.len() != other.len() || self.iter().ne(other) } } impl<T: Eq> Eq for LinkedList<T> { } impl<T: PartialOrd> PartialOrd for LinkedList<T> { fn partial_cmp(&self, other: &Self) -> Option<Ordering> { self.iter().partial_cmp(other) } } impl<T: Ord> Ord for LinkedList<T> { fn cmp(&self, other: &Self) -> Ordering { self.iter().cmp(other) } } impl<T: Hash> Hash for LinkedList<T> { fn hash<H: Hasher>(&self, state: &mut H) { self.len().hash(state); for item in self { item.hash(state); } } } impl<'a, T> IntoIterator for &'a LinkedList<T> { type IntoIter = Iter<'a, T>; type Item = &'a T; fn into_iter(self) -> Self::IntoIter { self.iter() } } impl<'a, T> Iterator for Iter<'a, T> { type Item = &'a T; fn next(&mut self) -> Option<Self::Item> { // While self.front == self.back is a tempting condition to check here, // it won't do the right for yielding the last element! That sort of // thing only works for arrays because of "one-past-the-end" pointers. if self.len > 0 { // We could unwrap front, but this is safer and easier self.front.map(|node| unsafe { self.len -= 1; self.front = (*node.as_ptr()).back; &(*node.as_ptr()).elem }) } else { None } } fn size_hint(&self) -> (usize, Option<usize>) { (self.len, Some(self.len)) } } impl<'a, T> DoubleEndedIterator for Iter<'a, T> { fn next_back(&mut self) -> Option<Self::Item> { if self.len > 0 { self.back.map(|node| unsafe { self.len -= 1; self.back = (*node.as_ptr()).front; &(*node.as_ptr()).elem }) } else { None } } } impl<'a, T> ExactSizeIterator for Iter<'a, T> { fn len(&self) -> usize { self.len } } impl<'a, T> IntoIterator for &'a mut LinkedList<T> { type IntoIter = IterMut<'a, T>; type Item = &'a mut T; fn into_iter(self) -> Self::IntoIter { self.iter_mut() } } impl<'a, T> Iterator for IterMut<'a, T> { type Item = &'a mut T; fn next(&mut self) -> Option<Self::Item> { // While self.front == self.back is a tempting condition to check here, // it won't do the right for yielding the last element! That sort of // thing only works for arrays because of "one-past-the-end" pointers. if self.len > 0 { // We could unwrap front, but this is safer and easier self.front.map(|node| unsafe { self.len -= 1; self.front = (*node.as_ptr()).back; &mut (*node.as_ptr()).elem }) } else { None } } fn size_hint(&self) -> (usize, Option<usize>) { (self.len, Some(self.len)) } } impl<'a, T> DoubleEndedIterator for IterMut<'a, T> { fn next_back(&mut self) -> Option<Self::Item> { if self.len > 0 { self.back.map(|node| unsafe { self.len -= 1; self.back = (*node.as_ptr()).front; &mut (*node.as_ptr()).elem }) } else { None } } } impl<'a, T> ExactSizeIterator for IterMut<'a, T> { fn len(&self) -> usize { self.len } } impl<T> IntoIterator for LinkedList<T> { type IntoIter = IntoIter<T>; type Item = T; fn into_iter(self) -> Self::IntoIter { self.into_iter() } } impl<T> Iterator for IntoIter<T> { type Item = T; fn next(&mut self) -> Option<Self::Item> { self.list.pop_front() } fn size_hint(&self) -> (usize, Option<usize>) { (self.list.len, Some(self.list.len)) } } impl<T> DoubleEndedIterator for IntoIter<T> { fn next_back(&mut self) -> Option<Self::Item> { self.list.pop_back() } } impl<T> ExactSizeIterator for IntoIter<T> { fn len(&self) -> usize { self.list.len } } #[cfg(test)] mod test { use super::LinkedList; #[test] fn test_basic_front() { let mut list = LinkedList::new(); // Try to break an empty list assert_eq!(list.len(), 0); assert_eq!(list.pop_front(), None); assert_eq!(list.len(), 0); // Try to break a one item list list.push_front(10); assert_eq!(list.len(), 1); assert_eq!(list.pop_front(), Some(10)); assert_eq!(list.len(), 0); assert_eq!(list.pop_front(), None); assert_eq!(list.len(), 0); // Mess around list.push_front(10); assert_eq!(list.len(), 1); list.push_front(20); assert_eq!(list.len(), 2); list.push_front(30); assert_eq!(list.len(), 3); assert_eq!(list.pop_front(), Some(30)); assert_eq!(list.len(), 2); list.push_front(40); assert_eq!(list.len(), 3); assert_eq!(list.pop_front(), Some(40)); assert_eq!(list.len(), 2); assert_eq!(list.pop_front(), Some(20)); assert_eq!(list.len(), 1); assert_eq!(list.pop_front(), Some(10)); assert_eq!(list.len(), 0); assert_eq!(list.pop_front(), None); assert_eq!(list.len(), 0); assert_eq!(list.pop_front(), None); assert_eq!(list.len(), 0); } } }